ether-py Documentation
Release 2021.3.0

Dave Dittrich

Jun 16, 2021

CONTENTS:

1 Introduction

1.1 Features e e e e
1.2 Contact o e e e e e e e e e e e e e e e e e e
1.3 0 Credits o o e e e e
1.4 Related Projects e e e e e e e e e e e
1.5 Creating tokens and SMart CONractS v v v v v v v v et e e e e e e e e
1.6 Otherreferences L i e e e e e
2 Usage
2.1 Gettinghelp oL e e e e e
2.2 FOrmMatters v v v i vt e i e
2.3 0 Logging. . . . oL e e e e e e e e
24 Command EroUpPS v v v v v i e e e e e e e e e e e e e e

3 Development Lifecycle Tasks

3.1 Development Testing oL e e e e e e
3.2 Documentationl e
3.3 Version numbering e e e e e e e e e e e e e e e e e
34 Releasingon PyPlor Test PyPl e
4 Credits
4.1 DevelopmentLead e e e e e e e e e
4.2 Contributors e e e e e e e e e e e
4.3 Projectsourcetemplate L
5 License

6 Indices and tables

Index

AR A WWLWWW

AN L L U

19

19
21
23

27
27
27
27

29

31

33

ether-py Documentation, Release 2021.3.0

This document (version 2021.3.0) describes the ether-py Ethereum command line interface (ether-py for short).

CONTENTS: 1

ether-py Documentation, Release 2021.3.0

2 CONTENTS:

CHAPTER
ONE

INTRODUCTION

This chapter introduces the ether-py Ethereum command line interface (ether-py for short).

This CLI was inspired, in part, by the article Creating a Python Ethereum Interface: Part 1 for similar reasons. I not
only wanted to do the same things, but to take advantage of the rich feature set provided by cliff for more output control,
built-in command help, modularity and extensibility.

1.1 Features

» ether-py provides a general Python command line interface (CLI) built on the OpenStack cliff — Command
Line Interface Formulation Framework.

e cliff provides many useful features like modularizing subcommands into groups, built-in help for internally
documenting commands, and producing output in clean tabular form or in one of several data formats you can
feed into other tools or automation platforms.

* Sphinx documentation for generation with ReadTheDocs including c1liff autoprogram Sphinx integration for
documenting commands from the same --help output you can get at the command line.

» Uses the python_secrets package (psec) to manage endpoint configuration settings and access control tokens
to prevent secrets leakage and to make it easy to switch between local development/testing using ganache and
accessing a live Ethereum blockchain using Infura endpoints.

¢ Uses py-solc-x for installing Solidity compilers and compiling Solidity smart contracts (. sol files) dependabot.

1.2 Contact

Dave Dittrich <dave.dittrich@ gmail.com>

Copyright © 2021 Dave Dittrich. All rights reserved.

1.3 Credits

This package was created with Cookiecutter from the <https://github.com/davedittrich/cookiecutter-cliffapp-template>
project template. It derives some of its features and inspiration from <https://github.com/veit/
cookiecutter-namespace-template> and <https://github.com/audreyfeldroy/cookiecutter-pypackage>.

https://hackernoon.com/creating-a-python-ethereum-interface-part-1-4d2e47ea0f4d
https://github.com/openstack/cliff
https://github.com/openstack/cliff
https://github.com/openstack/cliff
http://www.sphinx-doc.org/
https://readthedocs.com
https://docs.openstack.org/cliff/latest/user/sphinxext.html
https://pypi.org/project/python-secrets
https://www.trufflesuite.com/ganache
https://infura.io
https://github.com/iamdefinitelyahuman/py-solc-x
https://docs.github.com/en/code-security/supply-chain-security/configuring-dependabot-security-updates
mailto:dave.dittrich@gmail.com
https://github.com/cookiecutter/cookiecutter
https://github.com/davedittrich/cookiecutter-cliffapp-template
https://github.com/veit/cookiecutter-namespace-template
https://github.com/veit/cookiecutter-namespace-template
https://github.com/audreyfeldroy/cookiecutter-pypackage

ether-py Documentation, Release 2021.3.0

1.4 Related Projects

* https://pypi.org/project/web3/ (Web3.py)

* https://pypi.org/project/ethereum/ (Next generation cryptocurrency network)

* https://pypi.org/project/ethereum-tools/ (High-level tools and library to interact with Ethereum)

* https://pypi.org/project/ethereum2-etl/ (Tools for exporting Ethereum 2.0 blockchain data to CSV and JSON)
* https://pypi.org/project/pytest-ethereum/ (pytest-ethereum: Pytest library for ethereum projects.)

* https://pypi.org/project/ethereum-gasprice/ (Tool for fetching actual gasprice in ethereum blockchain)

* The Eth2 Upgrades: Upgrading Ethereum to radical new heights

1.5 Creating tokens and smart contracts

* Non-fungible tokens (NFTs)

* https://docs.ethhub.io/built-on-ethereum/erc-token-standards/erc721/

1.6 Other references

* Deep dive into Ethereum logs, by banteg, codeburst.io (Medium), Jan 4, 2018

4 Chapter 1. Introduction

https://pypi.org/project/web3/
https://pypi.org/project/ethereum/
https://pypi.org/project/ethereum-tools/
https://pypi.org/project/ethereum2-etl/
https://pypi.org/project/pytest-ethereum/
https://pypi.org/project/ethereum-gasprice/
https://ethereum.org/en/eth2/
https://ethereum.org/en/nft/
https://docs.ethhub.io/built-on-ethereum/erc-token-standards/erc721/
https://codeburst.io/deep-dive-into-ethereum-logs-a8d2047c7371

CHAPTER
TWO

USAGE

Subcommand groups in ether-py are divided by categories reflecting specific features, data sources, etc.

2.1 Getting help

To get help information on global command arguments and options, use the help command or --help option flag.
The usage documentation below will detail help output for each command.

2.2 Formatters

The cliff — Command Line Interface Formulation Framework provides a set of formatting options that facilitate ac-
cessing and using stored secrets in other applications. Data can be passed directly in a structured format like CSV, or
passed directly to programs like Ansible using JSON.

Attention: The formatter options are shown in the --help output for individual commands. For the purposes of
this chapter, including the lengthy formatter options on every command would be quite repetitive and take up a lot
of space. For this reason, the formatter options will be suppressed for commands as documented below. You can
see the differences in this functional example.

2.3 Logging

CIiff also includes a mechanism for writing log output from the program to a user-specified file at runtime. This is
useful for debugging, as well as for monitoring long-running actions.

Here is an example of logging output of the about command:

$ ether-py -vvvv --log-file logfile about

initialize_app

[+] command line: /usr/local/Caskroom/miniconda/base/envs/test/bin/ether-py -vvvv --log-
—file logfile about

prepare_to_run_command About

ether-py version 2021.3.0rcl

This program was bootstrapped from a " cookiecutter = template created
by Dave Dittrich <dave.dittrich@gmail.com>:

(continues on next page)

https://github.com/openstack/cliff
https://python-secrets.readthedocs.io/en/latest/usage.html#usage

ether-py Documentation, Release 2021.3.0

(continued from previous page)

https://github.com/davedittrich/cookiecutter-cliffapp-template.git
https://cookiecutter-cliffapp-template.readthedocs.io

Author: Dave Dittrich <dave.dittrich@gmail.com>

Copyright: 2021, Dave Dittrich. All rights reserved.

License: Apache Software License 2.0

URL: https://pypi.python.org/pypi/{{cookiecutter.project_name}}

[!] clean_up About

Here is what the output would look like:

§ cat logfile

[2021-06-08 14:31:57,050] DEBUG ether-py initialize_app

[2021-06-08 14:31:57,051] INFO ether-py [+] command line: /usr/local/Caskroom/
—miniconda/base/envs/test/bin/ether-py -vvvv --log-file logfile about

[2021-06-08 14:31:57,052] DEBUG ether-py prepare_to_run_command About
[2021-06-08 14:31:57,073] DEBUG ether-py [!] clean_up About

2.4 Command groups

2.4.1 About

about

About the ether-py CLI

ether_py about [--readthedocs] [--browser BROWSER] [--force]

--readthedocs
Open a browser to the ether-py readthedocs page (default: False{}).

--browser <BROWSER>
Browser to use for viewing (default: None).

--force
Open the browser even if process has no TTY (default: False)

Shows information about the ether-py CLI.

$ ether-py about
ether-py version 0.1.dev25+g8f92cdc

It will also print out copyright and related information (which isn’t easy to force autoprogram-cliff to parse correctly
in help output).

The --readthedocs option will open a browser to the ether-py documentation web page.
ABOUT THE BROWSER OPEN FEATURE
This program uses the Python webbrowser module to open a browser.

https://docs.python.org/3/library/webbrowser.html

6 Chapter 2. Usage

https://docs.python.org/3/library/webbrowser.html

ether-py Documentation, Release 2021.3.0

This module supports a large set of browsers for various operating system distributions. It will attempt to chose an
appropriate browser from operating system defaults. If it is not possible to open a graphical browser application, it may
open the lynx text browser.

You can choose which browser webbrowser will open using the identifier from the set in the webbrowser documenta-
tion. Either specify the browser using the --browser option on the command line, or export the environment variable
BROWSER set to the identifier (e.g., export BROWSER=firefox).

It is also possible to set the BROWSER environment variable to a full path to an executable to run. On Windows 10
with Windows Subsystem for Linux, you can use this feature to open a Windows executable outside of WSL. (E.g., us-
ing export BROWSER='/c/Program Files/Mozilla Firefox/firefox.exe' will open Firefox installed in that
path).

Also note that when this program attempts to open a browser, an exception may be thrown if the process has no TTY.
If this happens, use the --force option to bypass this behavior and attempt to open the browser anyway.

2.4.2 Block
block get

Get Ethereum block

ether_py block get BLOCK

BLOCK
Ethereum block number

Get an Ethereum block.

The block number should be the block’s number, its hash, or the word “latest” to get the most recent block.

$ ether-py block get latest
ether-py ERROR [!] NOT IMPLEMENTED

block show

Show Ethereum block

ether_py block show [--prefix PREFIX] BLOCK [FIELD]

--prefix <PREFIX>
add a prefix to all variable names

BLOCK
Ethereum block number

FIELD
Block metadata field

Get an Ethereum block.

The block number should be the block’s number, its hash, or the word “latest” to get the most recent block.

$ ether-py block show latest --fit-width

(continues on next page)

2.4. Command groups 7

ether-py Documentation, Release 2021.3.0

(continued from previous page)

| Field | Value .
- I

- -
e e +

| number | 15 o
. I

| hash | 0x008547e530fe0965d3711d25fbb1d20264c16d525£02aa280633c1a721££5720 .
o I

| parentHash | 0xc95783fb95338588b8bffe4c88eb979086e0cb6b6fdd1la78bc591319¢c3270906d ..
- |

| mixHash | 0x00 .
. I

| nonce | 0x0000000000000000 o
N |

| sha3Uncles | ®xldcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413£f0a142£d40d49347 .
o I

| logsBloom |

—0x00
]

! I
—00
|

| I
—00
]

! I
—00
|

| | 00000000000000000000000000000000000000

. |

0000000000000

0000000000000

0000000000000

0000000000000

| transactionsRoot | 0x9£f619679ac®f15e5725d63c06bf352£88a2eb0®02d7bbb983188a929c10£f38del ..
IﬂstateRoot | ®xeb®ae3b8c7beb461793f978®d4e1805I5843f6®227768c3b19b®472216673ed6 o
I)receiptsRoot | ®xd542®f®d6143865fa94e3464abb47a®é4c4f83dd5b91596®3616fe39b97dd2b2 o
Iﬂminer | ®x®®®®®®0®®000®®00®®®®®®®®®®®®®®®é®®®®®®®® o
Iﬁdifficulty | O | o
I)totalDifficulty | O | o
IﬁextraData | Ox l o
Iﬂsize | 1000 | o
IﬁgasLimit | 6721975 l o
IﬂgasUsed | 313249 | o
I)timestamp | 1618011641 l o
- |

{continues on next page)
8 Chapter 2. Usage

ether-py Documentation, Release 2021.3.0

(continued from previous page)

| transactions | [HexBytes(

. '0x07a137a05974311c877874d5£d699d90adfeb4£fcal®c95d989285a504af39b2d ')] o
o [

| uncles | [1] -
o I

- e
o +

2.4.3 Contract

contract list

List contract files

ether_py contract list [--sort-ascending | --sort-descending] [NAME]

--sort-ascending
sort the column(s) in ascending order

--sort-descending
sort the column(s) in descending order

NAME
Solidity contract name

List Solidity contracts and related files.

Solidity contracts are compiled from source code in . sol files. By convention, ether-py expects the contact name to
be the same as the . sol file without the extension (so Greeter.sol is the source file for the contract Greeter).

Only contracts with files having . sol extensions are listed. Initially, just those files exist and none of the related file
types:

$ ether-py contract list

e R o o o +
| name | abi | address | bytecode | receipt |
o e o o o +
| Greeter | No | No | No | No |
| SimpleCollectible | No | No | No | No |
e R B o o +

As contracts are compiled and loaded, additional files with file extensions in the following set are created:
{ .abi, .address, .bytecode, .receipt }

After compiling the contract, the .abi and .bytecode files will exist:

$ ether-py demo greeter compile

solcx INFO Using solc version 0.7.6

[+] created /Users/dittrich/git/ether-py/contracts/Greeter.bytecode
[+] created /Users/dittrich/git/ether-py/contracts/Greeter.abi

$ ether-py contract list

o e o o o +

| name | abi | address | bytecode | receipt |

(continues on next page)

2.4. Command groups 9

ether-py Documentation, Release 2021.3.0

(continued from previous page)

e - R o o o +
| Greeter | Yes | No | Yes | No |
| SimpleCollectible | No | No | No | No |
o e o o o +

After loading the contract into the Ethereum blockchain, the .address and .receipt files will exist:

$ ether-py demo greeter load
0x22785519732£4623B9D3096bE3bCDF47053cA035
[+] greeter says 'Hello'

$ ether-py contract list

e R o o et +
| name | abi | address | bytecode | receipt |
o e o o o +
| Greeter | Yes | Yes | Yes | Yes |
| SimpleCollectible | No | No | No | No |
e R o o et +

You can limit the output to one or more contracts by naming them as arguments on the command line:

$ ether-py contract list Greeter

o ————— fm——— o ————— o o +
| name | abi | address | bytecode | receipt |
o ————— Fm——— o ————— o o +
| Greeter | Yes | Yes | Yes | Yes |
o o o o o +

Use the -v option to show the path to the contracts directory.

contract show

Show Solidity contract files

ether_py contract show
[--sort-ascending | --sort-descending]
NAME
[TYPE]

--sort-ascending
sort the column(s) in ascending order

--sort-descending
sort the column(s) in descending order

NAME
Solidity contract name

TYPE
Associated file type

List Solidity contract files.

10 Chapter 2. Usage

ether-py Documentation, Release 2021.3.0

2.4.4 Demo

demo Greeter call

Call Greeter contract

ether_py demo Greeter call MESSAGE

MESSAGE
New Greeter message

Call the Greeter contract with a message.

demo Greeter compile

Compile Greeter contract

ether_py demo Greeter compile [--solc-version VERSION]

--solc-version VERSION
Use solc compiler version (default: ‘latest’)

Compile the Greeter contract.

If no compatible compiler is installed, you will get a message showing the pragma specified in the . sol file:

$ ether-py demo Greeter compile
[-]1 No compatible solc version installed matching 'pragma solidity >=0.6.0 <0.8.0;': see
— 'ether-py solc install --help'

Identify a compatible version using ether-py solc versions --installable and install before trying again:

$ ether-py solc install 0.7.6

solcx INFO Downloading from https://solc-bin.ethereum.org/macosx-
—amd64/solc-macosx-amd64-v®.7.6+commit.7338295f
solcx INFO solc 0.7.6 successfully installed at: /Users/dittrich/

- .solcx/solc-v0.7.6

[+] installed solc version '0.7.6'

$ ether-py demo Greeter compile -v

initialize_app

[+] command line: ether-py demo Greeter compile -v

[+] established connection to ganache endpoint at http://127.0.0.1:7545
solcx INFO Using solc version 0.7.6

[+] created /Users/dittrich/git/ether-py/contracts/Greeter.bytecode

[+] created /Users/dittrich/git/ether-py/contracts/Greeter.abi

2.4. Command groups 11

ether-py Documentation, Release 2021.3.0

demo Greeter load

Load Greeter contract

ether_py demo Greeter load

Saves the Greeter contract to the ethereum blockchain.

$ ether-py demo -v Greeter load

initialize_app

[+] command line: ether-py demo -v Greeter load

[+] established connection to ganache endpoint at http://127.0.0.1:7545
[+] transaction 0xF43Dd5d4£f35D468c65B96901B93e8BCaD6F3C210 received

[+] Greeter says 'Hello'

2.4.5 Eth

eth send

Send Ethereum

ether_py eth send ETH

ETH
Transaction amount in eth

Send Ethereum from one address to another.

$ ether_py eth send FROM TO ETH

eth show

Show Ethereum blockchain information

ether_py eth show [--prefix PREFIX] [FIELD]

--prefix <PREFIX>
add a prefix to all variable names

FIELD
Blockchain metadata field

Shows attributes about Ethereum blockchain.

§ ether-py eth show

B et e +
| Field | Value
o e ittt +
| block_number | 15
| chain_id | 1337
| coinbase | 0xB9f74d880185873808D363£9295BBC91314B0759 |
| default_account | None
| default_block | latest
(continues on next page)
12 Chapter 2. Usage

ether-py Documentation, Release 2021.3.0

(continued from previous page)

| gas_price | 20000000000

| hashrate | 0 |
| is_async | False

| mining | True

| protocol_version | 63

| syncing | False

- - +
2.4.6 Net

net show

Show Ethereum net

ether_py net show [--prefix PREFIX] [FIELD]

--prefix <PREFIX>
add a prefix to all variable names

FIELD
Ethereum network metadata field

Shows attributes about Ethereum net.

$ ether_py net show

o T +
| Field | Value |
B e e e +
is_async	False
listening	True
peer_count	0
version	5777
o e +
2.4.7 Solc

solc install

Install solc compiler version(s)

ether_py solc install VERSION [VERSION ...]

VERSION
Solidity compiler version

Install one or more solc compiler versions.

Solidity smart contracts (.sol files) usually specify a particular solc compiler version, or a range of compatible
versions, using a pragma statement that looks like this:

pragma solidity >=0.6.0 <0.8.0;

2.4. Command groups 13

ether-py Documentation, Release 2021.3.0

ether-py will extract the pragma statement and pass it along to solc when compiling the contract. If no compatible
compiler can be found, you will get an error message that shows the pragma statement. Select a compiler version that
matches the range from a list of installable solc versions shown by ether-py solc versions --installable
(0.7.6 will work in this case.) You can then install it, and the most recent compiler version, like this:

$ ether-py solc install 0.7.6 latest

solcx INFO Downloading from https://solc-bin.ethereum.org/macosx-
—amd64/solc-macosx-amd64-v0.7.6+commit.7338295f
solcx INFO solc 0.7.6 successfully installed at: /Users/dittrich/

—.solcx/solc-v0.7.6
[+] installed solc version '0.7.6'

solcx INFO Downloading from https://solc-bin.ethereum.org/macosx-
—,amd64/solc-macosx-amd64-v0.8.3+commit.8d00100c
solcx INFO solc 0.8.3 successfully installed at: /Users/dittrich/

—.solcx/solc-v0.8.3
[+] installed solc version 'latest'
$ ether-py solc versions

solc remove

Remove solc compiler version(s)

ether_py solc remove VERSION [VERSION ...]

VERSION
Solidity compiler version

Remove one or more solc compiler versions.

Specify one or more compiler versions by their version number, by a substring (to select more than one version in a
series), the word latest to remove the highest numbered version, or all to remove all versions.

$ ether-py solc versions 0.8

+o—— - +
| version |
o +
| 0.8.3 |
| 0.8.0 |
o +

$ ether-py solc remove 0.8.0
[+] removed /Users/dittrich/.solcx/solc-v0.8.0
$ ether-py solc versions

(continues on next page)

14 Chapter 2. Usage

ether-py Documentation, Release 2021.3.0

(continued from previous page)

solc show

Show solc compiler information

ether_py solc show [--prefix PREFIX] [FIELD]

--prefix <PREFIX>
add a prefix to all variable names

FIELD
Solidity compiler metadata field

Show information about the active solc compiler.

$ ether-py solc show

o B +
| Field | Value |
o m e et e L e +
active_version	9.8.0
active_version_hash	0.8.0+commit.c7dfd78e
executable	/Users/dittrich/.solcx/solc-v0.8.0
installed_versions	0.8.0,0.7.6
o m e e ittt e e +
solc versions
Show solc compiler versions
ether_py solc versions

[--sort-ascending | --sort-descending]

[--installable]

[VERSION]

--sort-ascending
sort the column(s) in ascending order

--sort-descending
sort the column(s) in descending order

--installable
Show installable versions (default: False)

VERSION
Solidity compiler version

Show solc compiler versions.

By default, you will be shown the list of solc compilers that are currently installed and available for use in compiling
Solidity smart contract (. sol files).

2.4. Command groups 15

ether-py Documentation, Release 2021.3.0

$ ether-py solc versions

o +
| version |
o +
| 0.8.0 |
| 0.7.6 |
o +

To instead see a list of installable versions, use the --installable flag.

$ ether-py solc versions --installable

o +
| version |
o +
| 0.8.3 |
| ©.8.2 |
| 0.8.1 |
| 0.8.0 |
| 0.7.6 |
| 0.7.5 |
.. I
| 0.4.12 |
| 0.4.11 |
o +

To see a subset of versions, include an argument with the substring to match on:

$ ether-py solc versions 0.7 --installable

o +
| version |
o +
| 0.7.6 |
| 0.7.5 |
| 0.7.4 |
| 0.7.3 |
| 0.7.2 |
| 0.7.1 |
| 0.7.0 |
o +

See also ether-py solc install --help.

2.4.8 Tx

tx show

Show Ethereum transaction

ether_py tx show [--prefix PREFIX] TRANSACTION [FIELD]

--prefix <PREFIX>
add a prefix to all variable names

16 Chapter 2. Usage

ether-py Documentation, Release 2021.3.0

TRANSACTION
Transaction ID

FIELD
Transaction metadata field

Show an Ethereum transaction (tx).

The transaction is identified by hash.

$ ether-py tx show 0x£f357f2c33c3793ffaa2f4c98c22790d7b587aa30c3df4fdd65143a8a2a50d523

o - +
| Field | Value |
o e +
hash	0x£357f2c33¢c3793ffaa2f4c98c22790d7b587aa30c3df4fdd65143a8a2a50d523
nonce	1
blockHash	0x07df29f220a31c43cd2792a2effa3all87eb6c66d71a6f2cbbff29c60c3270£6
blockNumber	2
transactionIndex	©
from	0xBe50e2b648e9A0e7E1e2B1b517C53¢cDAB6424355
to	0x3b4720e34496A6b2357045B£f129a40bCaC87B6el
value	500000000000000000
gas	2000000
gasPrice	50000000000
input	Ox
v	27
r	0x4b5a13£f54f054ab12cd3£f2b38c3d8b8de9cfc3chb7b431e7270135£00£7402510
s	0x5dd02463£f52bced1b990d1fc213e06930597a3fc5ef0ebb29156efe634a33748
e e T +

2.4. Command groups 17

ether-py Documentation, Release 2021.3.0

18 Chapter 2. Usage

CHAPTER
THREE

DEVELOPMENT LIFECYCLE TASKS

This section covers tasks related to software development and release.

3.1 Development Testing

GitHub Actions are configured in the . github/workflows/test-build-publish.yml file to always run tests when
you push to GitHub.

- name: Run tests
run: make test

As you can see, the command it runs is the same one you would run at the command line to test locally:

$ make test

Note: When you are about to make a release it is always a good idea to make sure that all tests pass before you bump
the version number or tag a test release and then push to trigger the release.

At the minimum, get used to running the pep8 Python syntax checks as you edit your code, as well as use a linter in
your integrated development environment editor (such as VSCode). You can do this with:

$ tox -e pep8

It is easier to fix any pep8 (or bandit) findings and commit working changes before you push than it is to deal with
the GitHub Actions failure and repeat the tagging and/or version bumping.

3.2 Documentation

Documentation is written in ReStructured Text in files located in the docs/ directory and rendered locally with Sphinx
using the make docs command and remotely on ReadTheDocs.

Configuration settings for ReadTheDocs are found in the file .readthedocs.yml:

.readthedocs.yml
Read the Docs configuration file
See https://docs.readthedocs.io/en/stable/config-file/v2.html for details

Required

(continues on next page)

19

ether-py Documentation, Release 2021.3.0

(continued from previous page)

version: 2

build:
image: latest

python:
version: 3.8
install:
- requirements: requirements.txt
- method: pip
path:
extra_requirements:
- docs

Build documentation in the docs/ directory with Sphinx
sphinx:
configuration: docs/conf.py

formats:
- pdf

Two things must be configured for new documentation to be generated when you push to GitHub.

1. A connection between your GitHub account and your ReadTheDocs account must be created. If one does not
already exist, create it now.

20 Chapter 3. Development Lifecycle Tasks

https://readthedocs.org/accounts/social/connections/

ether-py Documentation, Release 2021.3.0

= Read the Docs £ davedittrich ¥

davedittrich (Dave Dittrich)

R o s |

Successfully signed in as davedittrich.

Details Connected Services

Connected Services e The following services are currently connected to your account:

Change Password

ﬂ Dave Dittrich (GitHub) Disconnect
Change Email

API Tokens
Delete Account
Gold Membership

©) Connect to GitHub | &) Connect to GitLab | ® Connect to Bitbucket
Advertising

2. A webhook URL from ReadTheDocs must be created on ReadTheDocs and added to your GitHub repo.

To create the URL, go to the ReadTheDocs project Admin page, select Integrations from the left hand menu,
select GitHub incoming webhook, then copy the webhook URL.

To add it to your project’s GitHub repo, select the Settings tab, then select Webhooks from the left hand menu,
then Add Webhook. Paste the webhook URL into the Payload URL dialog box (making sure the URL starts
with https://) and finally clicking the Add webook button at the bottom of the page.

When a push to GitHub is made, the webhook is triggered signaling to ReadTheDocs to pull the most recent code and
render the documentation.

3.3 Version numbering

This repository is set up to use date based, or calendar versioning, for release version numbers. Version numbers use
the full year as the first (major) component, the month as the second (minor) component, and patch releases using the
third (normal patch) component.

To illustrate how this works for development release candidate and full release version numbers, let’s assume the last
full release was made in March 2021 and there was only one release. The corresponding version number would be
reflected in the VERSION file this way:

$ cat VERSION
2021.3.0

When you build the package with setup.py, or when the ether-py program wants to get the version number, they
both use setuptools_scm.

3.3. Version numbering 21

https://docs.readthedocs.io/en/stable/webhooks.html
https://calver.or
https://pypi.org/project/setuptools-scm/

ether-py Documentation, Release 2021.3.0

Someone running ether-py --version after installing the program with python -m pip install ether-py
will get a version number similar to the example above:

$ ether-py --version
ether-py 2021.3.0

When you are developing in a clone of the GitHub repo, the result will be a more precise version number that reflects the
next patch number or release candidate number, including specifics about the state of the Git repo beyond the previous
tag.

Let’s say tags in the repo look like this:

$ git tag -1 | grep v2021.3
v2021.3.0

v2021.3.1rcl

v2021.3.1rc2

v2021.3.1rc3

Given the last release candidate was v2021.3. 1rc3, the final component of the current development version number
would be 1rc4. If the repo is sitting at ten commits past the last tag with the last commit having hash g9a790a9, the
resulting version number as generated on the 29th of March would look like this:

$ python setup.py --version
2021.3.1rc4.dev10+g9a790a9.d20210329

The version number string exists in several files, which all need to be updated at the same time in a consistent manner.
The program bump2version handles that task as configured in the file setup.cfg.

The contents of that file at the time this document was generated are:

[bumpversion]
current_version = 2021.3.0
commit = False

tag = False
[bumpversion:file:README.rst]
[bumpversion:file:VERSION]

[bumpversion:file:ether_py/__init__.py]

[bumpversion: file:docs/conf.py]

Warning: If you need to add a new file containing the version number, make sure to add the file path to this file.

22 Chapter 3. Development Lifecycle Tasks

ether-py Documentation, Release 2021.3.0

3.4 Releasing on PyPI or Test PyPI

The GitHub Actions workflow file (. github/workflows/test-build-publish.yml) is set up to publish artifacts
to PyPI or Test PyPi based on pushed tags. Here is the portion of the file that handles this task.

- name: Publish release candidate artifacts to TestPyPI
if: >-

uses: pypa/gh-action-pypi-publish@release/vl1

with:
repository_url: https://test.pypi.org/legacy/
user: __token_ _

password: ${{ secrets.ETHERPY_TEST_PYPI_PASSWORD }}
packages_dir: ${{ steps.get_vars.outputs.ARTIFACT }}
verify_metadata: false
- name: Publish tagged artifacts to PyPI
if: >-

uses: pypa/gh-action-pypi-publish@release/vl1

with:
user: __token__
password: ${{ secrets.ETHERPY_PYPI_PASSWORD }}
packages_dir: ${{ steps.get_vars.outputs.ARTIFACT }}
verify_metadata: false

Before this will work, you must have first created a token named ETHERPY_TEST_PYPI_PASSWORD on Test PyPI and
another named ETHERPY_PYPI_PASSWORD on PyPI and stored them both in encrypted secrets within your GitHub repo.

Note: You will be copying and pasting the token values from one system to another, and we will be limiting the scope
of the tokens to the project level and not for your entire account. This means one token per GitHub project per package
index. It is best to use the same token names on both GitHub and Test PyPI or PyPI, for consistency and less confusion
later on.

You may also want to use separate browser windows to have them visible at the same time to ensure the right tokens
are used.

1. Open a browser tab and log into your GitHub account. Go to your project’s repo page, then select Settings, then
select Secrets from the menu on the left.

2. Open a new browser tab to https://test.pypi.org/ and log into your account. Select Account settings
on Test PyPI from the menu on the left, then then choose Create a token for ether-py. Enter
ETHERPY_TEST_PYPI_PASSWORD for the token name. For scope, select this project to limit the scope. Finally,
press Add token. You will only be able to see the token value once. Get ready to copy it to paste into the Value
field in the GitHub project window.

3.4. Releasing on PyPI or Test PyPI 23

https://test.pypi.org/

ether-py Documentation, Release 2021.3.0

A You are using TestPyP| - a separate instance of the Python Package Index that
allows you to try distribution tools and processes without affecting the real index.

{ davedittrich =

& Your projects

2 Account settings

Add API token

Token name (required)

ETHERPY_TEST_PYPI_PASSWORD ‘

What is this token for?

Permissions
Upload packages

Scope (reguired)

Ak

[Project: ether-py

3. In the GitHub window, create a new secret named ETHERPY_TEST_PYPI_PASSWORD. Paste the token into the
Value field, then select Add Secret.

24 Chapter 3. Development Lifecycle Tasks

ether-py Documentation, Release 2021.3.0

O Search or jump to... Pulls Issues Marketplace Explore

& davedittrich / ether-py FPrivate @ Unwatch + 1 Y7 star 0 YFark O
<» Code () Issues 1"l Pull requests (*) Actions [T Projects [0 wiki ses
Options Actions secrets / New secret
Manage access Name

ETHERPY TEST PYPI_PASSWORD

Security & analysis

Branches Value
Webhooks Pypi-
Notifications
Integrations
Deploy keys
e

Autolink references

Add secret
Actions

Secrets

Actions

Dependabot

4. Repeat the same process for PyPI using the token name ETHERPY_PYPI_PASSWORD.

3.4.1 For Every Release
The publishing workflow is triggered by pushing a new tag, so the push always has to be the last step in the release
process.

Before doing that push, make sure you update HISTORY . rst by analyzing your commit messages since the last release
and summarizing the highlights.

Note: While there are tools you can use to auto-generate ChangeLog files, using every Git commit message is a little
too verbose.

Add and commit the changes:

3.4. Releasing on PyPI or Test PyPI 25

ether-py Documentation, Release 2021.3.0

$ git add HISTORY.rst
$ git commit -m "Changelog for upcoming release 2021.3.1"

Warning: DO NOT FORGET to run make test when you think you are ready to make a release. This helps
make sure no remaining bugs or coding errors will cause the GitHub workflow to fail before it gets to the publish
step, which would require an additional tag following code fixes.

3.4.2 For Test Releases

To publish a test release on the develop branch, you only need to add an annotated tag with rc in the tag string. The
next candidate release tag in March following the example above would thus be v2021.3. 1rc4:

$ git tag -a v2021.3.rc4

Pushing the tag will trigger the release to Test PyPI.

3.4.3 For Full Releases

Full releases are more involved.

First make sure that all tests pass and that you are satisfied all code and documentation changes are ready. Then merge
all the new commits into the master branch and resolve any merge conflicts.

If you are using the Git HubFlow tool, you will now start a new release with git hf release start with the new
version number.

You are now ready to bump the version number in source files and update the history file. Assuming we are starting
with version 2021.3.0, there are two cases we need to consider in terms of choosing the new release number.

1. If you are making a release within the same month as the prior release, the new version number will only need
the patch component to be incremented. To go from 2021.3.0 to 2021.3.1, you just need to do:

$ bump2version patch

2. If you are making release in a different month or year from the previous release, the new version number will
have a different major and or minor number change.

In the case where the release is in the next month (e.g., going from 2021.3.0 to 2021.4.0), you only need to
do:

$ bump2version minor

If the time difference is longer than one month (e.g., going from 2021.3.0 to 2021.8.0), you need to do:

$ bump2version --current-version $(cat VERSION) --new-version 2021.8.0 patch

If you are using the Git HubFlow tool, do your normal release finish and it will handle the tagging and pushing.
Otherwise, manually tag and push the master branch and associated tag:

$ git tag -a v$(cat VERSION)
$ git push && git push --tags

Either way, the pushed tag will create the new release on both GitHub and PyPL

26 Chapter 3. Development Lifecycle Tasks

https://datasift.github.io/gitflow/TheHubFlowTools.html
https://datasift.github.io/gitflow/TheHubFlowTools.html

CHAPTER
FOUR

CREDITS

4.1 Development Lead

* Dave Dittrich <dave.dittrich@gmail.com>

4.2 Contributors

None yet. Why not be the first?

4.3 Project source template

This documentation and the repository for the ether-py project package were created with the Cookiecutter templating
engine from the <https://github.com/davedittrich/cookiecutter-cliffapp-template.git> project template.

27

mailto:dave.dittrich@gmail.com
https://github.com/cookiecutter/cookiecutter
https://github.com/davedittrich/cookiecutter-cliffapp-template.git

ether-py Documentation, Release 2021.3.0

28 Chapter 4. Credits

CHAPTER
FIVE

LICENSE

Berkeley Three Clause License

Copyright (c) 2021 Dave Dittrich. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECTAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

29

ether-py Documentation, Release 2021.3.0

30 Chapter 5. License

CHAPTER
SIX

INDICES AND TABLES

* genindex
¢ modindex
¢ search

Copyright © 2021 Dave Dittrich. All rights reserved.

31

ether-py Documentation, Release 2021.3.0

32 Chapter 6. Indices and tables

Symbols

--browser <BROWSER>
ether_py-about command line option, 6
--force
ether_py-about command line option, 6
--installable
ether_py-solc-versions command line
option, 15
--prefix <PREFIX>
ether_py-block-show command line option,
7
ether_py-eth-show command line option, 12
ether_py-net-show command line option, 13
ether_py-solc-show command line option,
15
ether_py-tx-show command line option, 16
--readthedocs
ether_py-about command line option, 6
--solc-version VERSION
ether_py-demo-Greeter-compile command
line option, 11
--sort-ascending
ether_py-contract-list
option, 9
ether_py-contract-show
option, 10
ether_py-solc-versions
option, 15
--sort-descending
ether_py-contract-list
option, 9
ether_py-contract-show
option, 10
ether_py-solc-versions
option, 15

command line
command line

command line

command line
command line

command line

B

BLOCK
ether_py-block-get command line option, 7
ether_py-block-show command line option,
7

INDEX

E

ETH
ether_py-eth-send command line option, 12
ether_py-about command line option
--browser <BROWSER>, 6
--force, 6
--readthedocs, 6
ether_py-block-get command line option
BLOCK, 7
ether_py-block-show command line option
--prefix <PREFIX>, 7
BLOCK, 7
FIELD, 7
ether_py-contract-list command line option
--sort-ascending, 9
--sort-descending, 9
NAME, 9
ether_py-contract-show command line option
--sort-ascending, 10
--sort-descending, 10
NAME, 10
TYPE, 10
ether_py-demo-Greeter-call command line
option
MESSAGE, 11
ether_py-demo-Greeter-compile command line
option
--solc-version VERSION, 11
ether_py-eth-send command line option
ETH, 12
ether_py-eth-show command line option
--prefix <PREFIX>, 12
FIELD, 12
ether_py-net-show command line option
--prefix <PREFIX>, 13

FIELD, 13

ether_py-solc-install command line option
VERSION, 13

ether_py-solc-remove command line option
VERSION, 14

ether_py-solc-show command line option
--prefix <PREFIX>, 15

33

ether-py Documentation, Release 2021.3.0

FIELD, 15

ether_py-solc-versions command line option
--installable, 15
--sort-ascending, 15
--sort-descending, 15
VERSION, 15

ether_py-tx-show command line option
--prefix <PREFIX>, 16
FIELD, 17
TRANSACTION, 16

F?

FIELD

ether_py-block-show command line option,
7

ether_py-eth-show command line option, 12

ether_py-net-show command line option, 13

ether_py-solc-show command line option,
15

ether_py-tx-show command line option, 17

M

MESSAGE
ether_py-demo-Greeter-call command line
option, 11

N

NAME
ether_py-contract-list command line
option, 9
ether_py-contract-show command line
option, 10

T

TRANSACTION
ether_py-tx-show command line option, 16
TYPE
ether_py-contract-show command line
option, 10

Vv

VERSION
ether_py-solc-install command line
option, 13
ether_py-solc-remove command line
option, 14
ether_py-solc-versions command line
option, 15

34

Index

	Introduction
	Features
	Contact
	Credits
	Related Projects
	Creating tokens and smart contracts
	Other references

	Usage
	Getting help
	Formatters
	Logging
	Command groups
	About
	about

	Block
	block get
	block show

	Contract
	contract list
	contract show

	Demo
	demo Greeter call
	demo Greeter compile
	demo Greeter load

	Eth
	eth send
	eth show

	Net
	net show

	Solc
	solc install
	solc remove
	solc show
	solc versions

	Tx
	tx show

	Development Lifecycle Tasks
	Development Testing
	Documentation
	Version numbering
	Releasing on PyPI or Test PyPI
	For Every Release
	For Test Releases
	For Full Releases

	Credits
	Development Lead
	Contributors
	Project source template

	License
	Indices and tables
	Index

